Sydney Technical High School

Mathematics - Extension One

HSC Assessment Task 1 December 2012

Name	Teacher
***************************************	1

General Instructions

- o Working Time 70 minutes.
- o Write using a blue or black pen.
- o Approved calculators may be used.
- All necessary working should be shown for every question.
- Begin each question on a fresh sheet of paper.

Total marks (55)

- Attempt Questions 1-11.
- o Marks indicated are a guide.
- All answers must be written in your answer book

Section 1

5 marks

Attempt Questions 1-5

Use the multiple-choice answer sheet for Questions 1-5

- 1. An infinite geometric series has a first term of 8 and a limiting sum of 12. What is the common ratio?
 - (A)

- (B) $\frac{1}{4}$ (C) $\frac{1}{3}$
- 2. The equation of the normal to the parabola $x^2 = 4\alpha y$ the variable point $P(2\alpha\rho, \alpha\rho^2)$ is given by $x+py = 2\alpha\rho + \alpha\rho^3$.

How many different values of ρ are there such that the normal passes through the focus of the parabola?

- (A) 0
- (B) 1
- (C) 2
- (D) 3

3.

NOT TO SCALE

The value of x is

- (A) 2.5
- (B) 6.25
- (C) 10
- (D) 12.5

O is the centre of the circle.
AB is a diameter.
BE is a tangent to the circle.
Find the value of x.

- (A) 40
- (B) 50
- (C) 60
- (D) 70

5. In the circles below, diameter PQ = diameter MN. In diagram I, PRQ is an arc of a circle centre S.

In which diagram is the greater area shaded?

- A. Diagram I
- C. The shaded areas in both diagrams are the same.
- B. Diagram II
- D. Cannot be determined from the information provided.

Question 6-11

Question 6 (7 Marks)

a) Find the value of x.

(reason required)

2

b) Over 7 years \$125 grows to \$164.49.

c)

Find the compound interest rate as a percentage per annum.

2

2

In the diagram the points A,B and C lie on the circle and AB produced meets the tangent from C at the point P.

- (i) Given that PC = 12cm, AB = 7cm and PB = x, find x. (reason not required)
- (ii) PC is the diameter of the circle passing through P, B and C.Find the length of BC. (in exact form)

- a) A gardener plants a bed of roses. The bed is planted so that the first row has 24 rose plants. The second row has 29 rose plants. Each succeeding row has 5 more rose plants than the previous row.
 - (i) Calculate the number of roses in the eighth row.

1

(ii) Which row would be the first to contain more than 150 rose plants?

2

(iii) The gardener has planted 2895 roses. Assuming that the above pattern has been continued, how many rows were planted?

>.

b)

The diagram shows a circle. The points P, Q, R and S lie on the circumference of the circle. Find the value of x? (reasons required)

3

a) With the drought ever worsening, James and Theodore design a counting generator that can simulate the number of rain drops per minute that fall over a river during a storm. The rain drops falling per minute forms the series

$$1+1+3+9+23+...$$

with the *n*th term given by the formula $R_n = 1 - 2n + 2^n$, where *n* represents the number of minutes.

(i) Which term of the series is 115?

1

(ii) Find the total amount of rain drops which fall over the river in the first twenty five minutes.

3

1

If the surface area of the river is 250m² find the average number of drops over (iii) the per cm² first twenty five minutes. (to the nearest drop)

b)

GF is a tangent to the circle at E and ABCD is a cyclic quadrilateral

3

$$\angle FEC = x^{\circ}$$

Prove DC//GF

PQ is a chord of the parabola $x^2 = 8y$ passing through the point A(0, 1) where P is $(4p,2p^2)$ and Q is $(4q,2q^2)$.

The tangents to the parabola at P and Q meet at the point T.

R is a point on the chord PQ with $RT \perp PQ$.

- a) Show the equation of the tangent at P is given by $y-px+2p^2=0$ and write the equation of the tangent at Q.
- b) Show the co-ordinates of the point T are x = 2(p+q), y = 2pq

3

- c) Show that the equation of the chord PQ is given by 2y = (p+q)x-4pq
- d) Show that $pq = -\frac{1}{2}$
- e) Find the equation of RT

a)

Copy or trace this diagram onto your Answer booklet.

Let CDB = x

Prove BCEF is a cyclic quadrilateral.

O is the centre of the circle. (reasons required)

3

5

b) Prove by mathematical induction that the following is true for all positive integers n.

$$\sum_{r=1}^{n} r(2^{r}) = (n-1) \cdot 2^{n+1} + 2$$

- a) The sum of the first n terms of a series is given by $S_n = \frac{n}{3}(n+1)(n+2)$.
 - i) Show that the *n*th term is given by $T_n = n(n+1)$.

2

ii) Find the sum of the second 50 terms.

- 2
- b) Stella sets up a prize fund with a single investment of \$1000 to provide her school with an annual prize of \$72.00. The fund accrues interest at a rate of 6% per annum, compounded annually. The first prize is awarded one year after the investment is set up.
 - i) Calculate the balance in the fund at the beginning of the second year, after the first prize has been awarded.
- ii) Let $\$B_n$ be the balance in the fund at the end of n years (after the nth Prize has been awarded and while funds are still available). Show that $B_n = 1200 200 (1.06)^n$
- 2
- iii) At the end of the tenth year (after that prize has been awarded), it is decided that the prize will henceforward be increased to \$90.
- 3
- Show that the fund can only award the full prize for 14 more years.

d) sub A(0,1) into chord PQ b) Step () Show true for n=1	ii) S
LHS = 1.2 = 2	2nd 50
$PQ = -\frac{1}{2}$ $RHS = (1-1) 2^{2} + 2 = 2$	= 100
true for n =1	"
e) m _{RT} = -2 T(2(p+q),2pq) Step® assume true for n=k p+q some positive integer	= 29
A	
$\therefore S = (k-1)^2 + 2$	b) i) Let
y-2pg= 2 (x-2(p+g)) Step 3 Show tive for n=k+1	account
31nce Pa = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 =	B = 1000
$y-1=\frac{-2}{(\rho+q)}\times+2$	
Sk+1= Sk+ Tk+1	ii) B ₂ =
······································	1
	(†)·
$= 2^{(k+1)}(k-1+k+1) + 2$: B = 1000 (
Question 10 C 2 2 k+1 (2k) + 2	= 1000 (
$= -k, 2', 2^{k+1} + 2$	
$= k \cdot 2^{k+2} + 2$	
Step (4) Since true for n=1	
A and if assumed tive for n=k	·- ·- ·- ·- ·- ·- ·- ·- ·- ·- ·-
(a positive integer) we have	$B_{n} = 10$
Shoun by M. I. true for n=-k	<u> </u>
BAD = or (atternate segment theorem) it is for all positive integer	
BFD = or (angles in same segment)	
DFE = 90° (angle in semi circle is 90° Question 11	Bn = 120
and angles on a straight	iii) after
$\begin{array}{c} (ine) \\ (ai) \\ (T_n = S_n - S_{n-1}) \end{array}$	_
$BFE = (x + 90^{\circ})$	1200 -
BCD = (90-sc) (angle sum of 90 ABCD = 1 (n+1)(n+2-(n-1))	Zion . A brize noti
-angle in semi circle	
	Bn= B10:
SINCE BFE + BCD= SC+90+90-X	
$= 180^{\circ} \qquad T_{n} = \frac{n}{3}(n+1)$	Fund u
· opposite angles add to 180	O= 841/83
BCEF is a cyclic quad.	

	A Comment of the Comm	
£01 n=1	ii) S = S100 - S50	1500 = 658.17 (1.06)
2 = 2	$= \frac{100}{3} (101)(101) - \frac{50}{3} (51)(52)$	logio (1500) = n logio 1.06
e for n=k	= 299200	$: n = \log_{10} \left(\frac{1500}{658.17} \right) $
for n=k+1	b) i) Let 18 be amount in account after n payments	109.0(1.06)
+2	$B_1 = 1000 \left(1 + \frac{6}{100}\right) - 72 = 988	
12-41	ii) $B_2 = (1000 (1.06)^2 - 72)(1.06)^2 - 72$	1
$\frac{k+1}{2+(k+1)2}$	$\frac{1000(1.06)^{2}-(1.06)^{4}2-72}{1.06}$ $\frac{1000(1.06)^{2}-(1.06)^{2}-12\cdots-72}{1.06}$	not enough for next prise
+ <u>2</u>	= 1000 (1.06) - 72 (1+1.06) ++(1.06)	of \$40
+2	CP! 421	
e for n=k	$B_{n} = 1000(1.06)^{n} - 72(1.06^{n} - 1) +$	<u>*** </u>
2 for n=-12+1	= 1000 (1.06) - 1200 (1.06 ² -1)	
ve integers	$\frac{1000(1.06)^{2}}{1200(1.06)^{3}} + 1200$ $\frac{1200}{100} = 1200 = 200 \cdot (1.06)^{3}$	
	iii) after 10 years B10, 15 1200 - 200 (1.06)10 = 841.83	
TAUAN 137	prize now increases to dan	
·. (^,1))	fin ++ Bn=Bn: (1.06)- 90 (1.06-1)	·
	Fund used when Bn=0	7
	0= 841.83 (1.06) - 1500 (1.06) + 150	ac